Виды 3д принтеров: классификация по используемым материалам и технологиям печати - kupihome.ru

Виды 3д принтеров: классификация по используемым материалам и технологиям печати

3D-принтер — это периферийное устройство, осуществляющее 3D-печать методом послойного формирования физического объекта по заданной цифровой 3D-модели.

Благодаря определенной простоте базовой конструкции оборудования, позволяющего осуществлять объемную печать, разработки в данной области ведутся как простыми людьми – энтузиастами 3d-печати (фактически каждый может собрать свой собственный 3d-принтер своими руками), так и крупными отраслевыми компаниями и центрами разработки.

Современные 3d-принтеры могут печатать как различными полимерными материалами (основная доля расходных материалов), так и металлом, специализированными строительными составами, продуктами питания и био-материалами.

3д-принтеры уже сегодня применяются как для бытового так и для профессионального прототипирования объектов. На сегодняшний день помимо условно “стандартных” образцов оборудования, имеются разработки и конструкции, осуществляющие печать еды, принтеры применяемые в медицине и принтеры способные печатать малоэтажные дома и небольшие конструкции.

Также отметим, что 3д-принтеры в частности и 3д-печать в целом активно используются в образовании, робототехнике и ряде других социально-значимых и инновационно-перспективных направлений.

Следует отметить, что 3d-принтеры – это одна из немногих категорий оборудования имеющих реальную возможность к самовоспроизведению (в частности, проект RepRap). [1]

Виды 3d-принтеров

Классификация 3д-принтеров ведется по нескольким ключевым параметрам, основными из которых являются: применяемая технология 3d-печати; материал печати; уровень качества и стабильности размеров получаемых изделий.

В последнем случае различают домашний (настольный) 3d-принтер и 3d-принтер профессионального класса, демонстрирующий более стабильные размеры напечатанных объектов, повышенную производительность (скорость печати) и качество прототипирования. Оборудование профессионального класса активно применяется в различных конструкторских бюро (с целью создания моделей и прототипов разрабатываемой продукции или конструкций), а также для целей мелкосерийного производства широкой гаммы изделий (сувенирная продукция, индивидуализированные корпуса электроники и тому подобное).

Типовая конструкция 3d-принтера

Индустрия 3D-печати переживает в настоящий момент этап бурного роста и развития, что привело к тому, что на сегодняшний день на рынке присутствует крайне широкая и весьма пестрая гамма образцов оборудования: от любительских принтеров, собранных своими руками в единичном экземпляре из подсобных деталей и элементов, до промышленных образцов, способных создавать высокоточные копии объектов с весьма сложной геометрией.

В целом, устройство 3D-принтеров на самом деле не очень сложное. Главные проблемы при изготовлении принтеров – обеспечить точность сборки и дальнейшей точности позиционирования по всем осям для экструдера, чтобы обеспечить качество печати.

Для того чтобы представить типовую конструкцию 3д-принтера рассмотрим самую распространенную (в настоящее время) технологию объемной печати – FDM (метод послойного наплавления).

Типовая конструкция 3D-принтера печатающего по методу послойного наплавления (FDM). (Визуализация: 3D Today)

3d-принтер состоит из:

  1. Корпус, играющий роль скелета для монтажа конструкционных элементов;
  2. Направляющие, осуществляющие сравнительно свободное перемещение печатающей головки в заданном пространстве;
  3. Печатающая головка (экструдер)группа частей, которая выполняет подачу, нагрев и вытеснение (экструзию) расходного материала через сопло на рабочую поверхность;
  4. Шаговые двигатели– элементы конструкции 3д-принтера, отвечающие за равномерное перемещение печатающей головки в заданном пространстве;
  5. Рабочий стол– строительная платформа 3D-принтера, на которой и осуществляется непосредственное создание трёхмерного объекта;
  6. Электроника– набор элементов, отвечающий за управление и координацию действий принтера в процессе печати.

Подробнее остановимся на некоторых (наиболее важных) элементах базовой конструкции 3д-принтера [2] .

Экструдер (печатающая головка) 3d-принтера

Наиболее важный элемент конструкции данного вида оборудования. Экструдер 3д-принтера – это узел, который обеспечивает подачу расплавленного пластика в рабочую зону аппарата. На сегодняшний день уже имеется огромное количество различных конструкторских решений.

В частности, имеются образцы оборудования оснащенные сменными соплами различного диаметра. Также есть варианты принтеров с двумя экструдерами в конструкции. Такие образцы способные печатать двумя цветами или осуществлять печать поддержек растворяемым пластиком PVA или HIPS.

Обслуживание экструдера 3д-принтера состоит в его очистке снаружи от налипших в процессе печати кусочков пластика. Иногда, обычно при работе с некачественными расходными материалами, сопло экструдера может довольно сильно засоряться – в этом случае приходится проводить его чистку.

Рабочий стол 3д-принтера

Стол может быть как нагреваемым, так и без такового. Для калибровки стола применяются либо автоматические приводы (автоматическая калибровка) или подпружиненные болты (ручная регулировка). Покрыт обычно стеклом, хотя есть варианты 3д-принтеров и с перфорированной платформой. Для нагреваемого стола еще добавляется и нагреваемый элемент.

Обслуживание данного элемента конструкции заключается в его калибровке и регулярной чистке поверхности.

Электроника и управление

Плата управления может находиться в корпусе. Большинство 3d-принтеров имеют плату на основе RAMPS. Но есть и варианты со своими решениями. Обычно достаточно проверять работает ли кулер охлаждения (если он необходим в данной конструкции).

Что касается экрана управления 3д-принтером, то он, следует отметить, присутствует отнюдь не на всех моделях данной категории оборудования. Обычно он есть там, где есть возможность печатать с SD карты.

Принцип работы 3д-принтера

Как уже было замечено, на сегодняшний день в индустрии насчитывается уже несколько подвидов методов 3д-печати, а также весьма обширный набор соответствующего оборудования и конструкций.

Для того, чтобы рассмотреть принцип работы 3d-принтера обратимся к его ключевому элементу (головке экструдера) и методу объемной печати, использующей пластиковую нить.

Процесс 3д-печати:

Нить (филамент) поступает в печатающую головку (экструдер), после чего осуществляется разогрев нити до ее жидкого состояния. Далее полученная масса выдавливается через сопло экструдера. При этом шаговые двигатели с помощью зубчатых ремней приводят в движение Экструдер, который перемещается по направляющим в заданном направлении и наносит пластик на платформу слой за слоем согласно заданной модели. [3]

3d-принтер – производители

Технология 3d-печати с одной стороны еще находится на этапе своего зарождения и становления, с другой стороны базируется на весьма проработанных технологических решениях из ряда других областей (в частности, экструзии полимеров). Данные обстоятельства в совокупности с развитием интернета, значительно ускорившего и упростившего обмен информацией в мировых масштабах, привели к тому, что теми или иными успехами в области разработки, конструирования и производства оборудования для 3d-печати могут похвастаться очень многие компании по всему миру.

Подавляющее большинство таких компаний (на сегодняшний день) занимается сборкой оборудования из готовых конструкционных элементов по находящимся в свободном доступе конструкторским схемам с минимальными изменениями и новациями. Однако на рынке уже есть и свое лидеры, – относительно крупные компании, сравнительно (учитывая возраст самого рынка 3д-печати) давно работающие в данной области. Список наиболее заметных из них представлен ниже.

Читать еще:  Asus zenfone 4 pro: обзор характеристик и возможностей

Ведущие производители:

  • 3D Systems(США);
  • EnvisionTEC(Германия);
  • Stratasys(США);
  • MX3D(Нидерланды);
  • Rapid Shape(Германия);
  • DWS s.r.l.(Италия);
  • Wuhan Binhu Mechanical & Electrical(Китай);
  • MakerBot Industries(США);
  • RepRapPro(Великобритания);
  • Magnum(Россия);
  • Ultimaker(Нидерланды);
  • PICASO 3D(Россия).

В общем и целом свое разработчики и (или) производители 3д-принтеров имеются практически в каждой цивилизованной стране мира. По различным оценкам экспертов и аналитиков, на сегодняшний день в мире можно купить 3d-принтер по меньшей мере от 300 компаний.

В Европе (как можно заметить из приведенного выше списка) центральное место занимают немецкие, голландские и итальянские компании, что вполне коррелирует с тем какое место на международном рынке занимают местные компании-производители оборудования для переработки полимеров. Также заметное место на мировом рынке аддитивных технологий занимает и Великобритания, где по разным оценкам насчитывается как минимум 15 компаний, разрабатывающих и изготавливающих оборудование для объемной печати.

В Азии безусловным лидером рынка выступают китайские компании. Однако и кроме них здесь есть заметные игроки и из других стран региона: Индия, Япония, Южная Корея, Тайвань и даже Таиланд и Гонконг.

На постсоветском пространстве безусловным лидером по количеству отраслевых компаний, работающих в области разработки и изготовления 3d-принтеров и вспомогательного оборудования, выступает Российская Федерация, на территории которой (по различным оценкам) уместилось по меньшей мере 36 предприятий, главные из которых представлены выше. Также следует отметить, что свое отраслевые фирмы имеются в Украине, Беларуси, Литве и Латвии.

В Северной Америке, помимо мирового лидера – США, свое функционеры в области разработки, производства и внедрения оборудования для печати 3dp присутствуют и в Канаде.

В заключении отметим, что есть свое компании-производители и в таких странах, как Израиль; Бразилия, Новая Зеландия и Австралия, хотя их можно в прямом смысле слова “пересчитать по пальцам” и заметного влияния на мировой рынок они (на данный момент) не оказывают.

Узнать больше про 3d-принтер:

  • Все материалы о 3d-печати в энциклопедии wiki.MPlast.by (статьи, термины, определения);
  • Все материалы о 3d-печати на портале MPlast.by (новости, энциклопедия, литература).

Также, для получения более полной картины по тематике 3д-печати в целом и 3д-принтеров в частности рекомендуем воспользоваться поиском по сайту (вверху страницы).

В чём отличие дешёвых от дорогих 3d–принтеров

Подобрать 3D-принтер под ваши задачи

Даже самые лучшие дешёвые 3D–принтеры потребительского уровня способны печатать объекты, размеры которых не превышает размера буханки хлеба, а более дешевые модели обладают ещё более скромными возможностями: обычно пространство для печати измеряется несколькими сантиметрами для каждой из сторон. Однако такие принтеры способны создавать объекты удивительной прочности, гладкости и чёткости, а это может очень пригодиться в домашних условиях, как для изготовления оригинальных крючков для одежды и солонок для соли, так и специфических деталей и запчастей, которые трудно найти в продаже.

Принтеры из акриловых деталей (оргстекла), которые в большом ассортименте можно встретить на прилавках Aliexpress, в действительности являются не более чем одноразовыми игрушками. Недолговечная пластиковая конструкция способствует образованию люфтов, косяков и проблем. Если вы серьезно относитесь к своему хобби, или 3D-принтер приобретается как профессиональный инструмент, лучшим выбором для начала знакомства с 3D-печатью будут примеры из этой статьи.

ТЕХНОЛОГИИ

ПРИМЕНЕНИЕ

  • Архитектура
  • Промышленный дизайн
  • Дизайн ювелирных изделий
  • Автомобильная промышленность
  • Проектирование и строительство
  • Аэрокосмическая промышленность
  • Географические информационные системы
  • Стоматологическая и медицинская промышленности
  • Гражданское строительство
  • Образование

FDM 3D–принтеры начального уровня. Ценовой диапазон: 25.000 – 50.000 ₽

Это самые дешевые 3D–принтеры, которые представлены простыми моделями, эти модели мы рекомендуем в качестве лучших 3D–принтеров из бюджетных вариантов. Процесс печати основан на моделировании методом послойного наплавления FDM (Fused deposition modeling). Пластиковая нить плавится, а затем наносится тонкими слоями, создавая модель. Бюджетные принтеры оснащаются одним соплом для выдавливания нити. В последнее время все чаще появляются SLA DLP принтеры, которые очень скоро сравняются по стоимости с FDM. К примеру, Wanhao Duplicator 7 — бюджетный фотополимерный LCD 3D-принтер

Они печатают медленно, им часто требуется много часов для того, чтобы воспроизвести один объект, и они печатают на ограниченной номенклатуре материалов.

  • Достоинства: низкая стоимость, простые принтеры являются идеальным вариантом для первоначального знакомства с процессом 3D–печати. Они, как правило, сравнительно просты в установке и настройке.
  • Недостатки: 3D–принтеры этого типа не оснащены закрытой камерой, конструкция хоть выглядит надежно, часто даже используется стальная рама. Отсутствие закрытого корпуса сразу накладывает ограничение по испльзованию видов пластика: PLA, SBS, PETG — пожалуй это всё чем они могут печатать без приложения изрядного шаманства.
  • Основные характеристики и расходные материалы: большинство принтеров этого типа обладают базовым программным обеспечением, но некоторые поставляются вообще без какого-либо программного обеспечения, и тем самым заставляют вас искать решения с открытым исходным кодом. В процессе печати обычно используются 1,75 миллиметровая нить, которая широко доступна в богатом цветовом ассортименте в виде катушек. Капризные материалы с высокой температурой плавления и коффициентом термической усадки ABS, HIPS, NYLON, PC, и другие — теоретически можно настроить печать, но придется выдумывать закрытый корпус, модернизировать экструдер и т.д.

Профессиональные FDM 3D–принтеры. Ценовой диапазон: от 100.000 – 200.000 ₽

Более сложные принтеры, использующие технологию FDM-печати, такие как Picaso, Ultimaker, Zenit, Hercules, 3DQ Prism, обладают дополнительными функциональными возможностями (по сравнению с 3D–принтерами начального уровня): например, они оснащаются несколькими экструдерами и способны работать с более тонкими слоями (до 0,1 миллиметра) и печатать более гладкие объекты.

  • Достоинства: увеличенная площадь печати позволяет воспроизводить более объёмные объекты (по сравнению с более простыми аналогами). Несколько экструдеров дают возможность использовать различные цвета и материалы поддержки во время печати одного и того же объекта. Закрытая камера печати дает преимущество по используемыми материалами.
  • Недостатки: более высокая стоимость. Наличие более сложной конструкции и комплектующих может означать, что ещё больше деталей способно выйти из строя во время интенсивной работы.
  • Основные характеристики и расходные материалы: ключевыми факторами являются количество экструдеров (встроенных или доступных при модернизации) и улучшенное вертикальное или Z-разрешение. Эти модели, как правило, оснащаются платформой печати увеличенного размера, который часто достигает 30 x 30 x 30 сантиметров. Выбор расходных материалов значительно широкий: ABS, PLA, HIPS, SBS, PC, PA, FLEX и другие.

SLA 3D–принтеры на базе стереолитографии. Около 100.000 ₽

Новинкой на рынке 3D–принтеров являются модели на базе лазерной стереолитографии или SLA-принтеры, такие как Form или B9 Creator. Они используют для печати светочувствительную смолу и цифровой проектор или лазер. Под воздействием света смола затвердевает. Платформа печати затем опускается, и свет формирует следующий слой; так происходит до тех пор, пока объект не будет завершен полностью. Такие принтеры способны воспроизводить объекты с очень высоким разрешением, но количество цветов ограничено: Form может печатать серым и прозрачным (бесцветным), другие принтеры также способны предложить небольшой ассортимент цветовой гаммы.

  • Достоинства: очень высокое разрешение, гладкая печать с точностью воспроизводимых элементов до 0,030 сантиметра и толщиной слоев 0,003 сантиметра.
  • Недостатки: Процесс печати, как правило, медленне, чем у моделей, построенных на базе технологией FDM. Ограниченный диапазон цвета, в связи с новизной технологий сам принтер и смола для печати отличаются достаточно высокой стоимостью.
  • Основные характеристики и расходные материалы: стоимость принтера и виды смолы являются ключевыми факторами — в настоящее время смола для Form стоит 20.000 – 30.000 ₽ за литр, и доступна только в бесцветном и сером вариантах. Стоит обратить внимание на размер платформы печати: большинство 3D–принтеров оснащаются платформами небольшого размера: около 15 x 13 x 13 сантиметров.
Читать еще:  Установка бойлера (водонагревателя) своими руками: монтаж, крепление, схема подключения

Порошковые 3D принтеры. Ценовой диапазон: от 600.000 ₽ и выше

Другой подход — это порошковая печать, в данном случае мелкодисперсный порошок наносится на поверхность, а затем либо лазер спекает (расплавляет) порошок (процесс, называется выборочным лазерным спеканием SLS) или растворитель, разжижает порошок, в результате чего он схватывается, формируя слой. Преимущество порошковой печати заключается в том, что она может работать с широким перечнем материалов, включая металлы, стекло и пластик. Это единственные принтеры, которые способны создавать цветные 3D–объекты, получаемые путём смешивания порошков различных цветов.

Порошковые принтеры сложнее в разработке, и им необходим либо мощный лазер, либо растворитель, именно этим и объясняется их дороговизна. Например, Zprinter 150 до сих пор считается устройством коммерческого класса, и его стоимость составляет 800.000 ₽. Терпеливые энтузиасты могут получить доступ к этой технологии по более доступной цене: собрав собственное устройство с помощью открытого исходного проекта экспериментального порошкового принтера.

  • Достоинства: принтер может создавать объекты в нескольких индивидуальных (пользовательских) цветах, получаемых путём смешивания порошков различных цветов. Некоторые модели могут печатать с помощью металлических порошков.
  • Недостатки: в настоящее время порошковое принтеры, либо очень дорогие, либо доступны только как проекты с открытым исходным кодом, которые вы можете попробовать собрать самостоятельно. Материалы для печати также дорогие.
  • Основные характеристики и расходные материалы: как и в случае со всеми остальными 3D–принтерами — необходимо учитывать размер печатной платформы и стоимость печати. Если вам придётся приобретать печатный материал, который изготавливает единственная компания (как в случае с моделями ZCorp), то вам необходимо учесть его стоимость в своих расчетах, так как этот материал, как правило, стоит довольно дорого.

Типы 3D-принтеров: технологии, материалы, применение

Исходя из их функциональных возможностей и областей применения 3D-принтеры можно разделить на три основные группы: домашние, профессиональные и производственные (промышленные). Более детально аддитивное оборудование классифицируется по технологиям и принципу действия, а также по используемым расходным материалам. Подробнее о технологиях и материалах 3D-печати читайте в публикациях нашего блога.

Домашние 3D-принтеры – несложные бюджетные устройства, печатающие пластиковой нитью (чаще всего это термопластики ABS или PLA). Принцип их работы основан на технологии FDM (Fused Deposition Modeling) – методе послойного наплавления материала на столе построения 3D-принтера, в результате чего получается готовое изделие. Благодаря низкой стоимости оборудования и материалов, FDM сегодня – самая распространенная технология 3D-печати, с помощью которой в бытовых условиях изготавливают такие изделия, как игрушки, сувениры, украшения. По точности печати FDM-принтер может соперничать с профессиональными устройствами, использующими пластики, однако вы сможете напечатать лишь объекты очень небольшого размера, а сами изделия нуждаются в детальной постобработке.

Потребительские 3D-принтеры не подходят для использования на предприятиях, поскольку:

  • производители не дают гарантий на качество работы;
  • требуется постоянная настройка и калибровка оборудования;
  • мощности 3D-принтеров хватает только для печати единичных малогабаритных изделий.

Профессиональные 3D-принтеры – аддитивные установки более высокого класса, предназначенные для специализированного использования на предприятиях. Они особенно полезны на производствах, когда необходимо изготовить мелкосерийную продукцию или единичные изделия сложной геометрии и высокого качества. Профессиональные машины более автономны по сравнению с домашними, но нуждаются в определенном контроле оператора-специалиста.

К самым сложным и габаритным аддитивным установкам относятся промышленные 3D-принтеры, созданные для использования на крупных производствах. Эти машины не только требуют больших первоначальных вложений, но и должны удовлетворять особым условиям безопасности (в частности, работать в отдельных помещениях, оснащенных системами обеспечения). Производственные принтеры имеют неоспоримые преимущества для внедрения в производственный цикл предприятий – высокую производительность, точность печати и стабильность работы. На промышленных установках могут работать специалисты (инженеры-технологи, инженеры-конструкторы), прошедшие базовый курс обучения на 3D-принтерах.

Наша компания предлагает промышленное 3D-оборудование от ведущего производителя установок 3D-печати металлами SLM Solutions и стереолитографические 3D-принтеры китайской компании ProtoFab.

Профессиональные 3D-принтеры: работоспособность и надежность

Если предприятие поставило задачи модернизировать традиционные технологии, сократить расходы или увеличить количество поставок продукции, профессиональный 3D-принтер стоит рассматривать как идеальное решение для достижения этих целей. Установки профессионального класса гораздо дешевле промышленных, при этом сфера их применения исключительно широка. В качестве материалов в этих устройствах используется воск, гипс, фотополимерные смолы или пластики.

Профессиональный 3D-принтер сокращает время изготовления изделия: например, деталь до 3 см любой возможной геометрии в среднем можно напечатать за пару часов. При этом количество отходов после постобработки минимально.

Благодаря разнообразию и уникальным свойствам материалов, а также возможностям полноцветной печати профессиональные принтеры решают широкий спектр задач в авиационной, автомобильной, ювелирной промышленности, в медицине, науке, дизайне, архитектуре и проектировании. С помощью этих машин создаются прототипы, модели для литья по выплавляемым и выжигаемым моделям, макеты, оснастка, готовые изделия.

В машиностроении, например, 3D-принтеры используются для проверки функциональности прототипа, его совместимости с оригинальной конструкцией. Помимо этого, они применяются в создании архитектурных макетов с подробной детализацией и конечных продуктов для потребителей: запчасти, пластиковая тара, ювелирные изделия и прочее.

Производственные 3D-принтеры: 3D-печать в промышленных масштабах

Производственные 3D-принтеры, они же промышленные или индустриальные, – самый высокий класс систем для аддитивного производства. Преимущественно это оборудование для крупных производств, которое используются в машиностроении, авиакосмической, оборонной, металлургической промышленности и других отраслях, где требуются прототипы и конечные детали больших размеров, выполненные с высокой точностью и эталонным качеством.

  • SLA – лазерная стереолитография, основанная на послойном отверждении жидкого фотополимера под действием лазера;
  • SLM – селективное лазерное плавление металлических порошков при помощи иттербиевого лазера.
  • SLS – селективное лазерное спекание под лучами лазера частиц порошкообразного материала (п олистирол, полиамид, нейлон и др. пластики, керамика, стекло, композитные материалы, песчаные составы ).

Промышленные 3D-принтеры – единственные аддитивные установки, реализующие возможность 3D-печати металлами. Используя металлические порошки, можно изготавливать прототипы моделей, а также конечный продукт – готовые детали для сборки или части металлических изделий, в том числе объекты сложнейшей формы и фактуры, которые нельзя получить традиционными методами.

3D-принтеры этой категории полностью автоматизированы, поэтому не требуют для работы штата специалистов. Помимо этого, они автономны. За установкой не нужно следить во время работы – вы запускаете процесс печати и ждете, когда деталь будет выращена. 3D-принтеры готовы к работе 24 часа 7 дней в неделю – их не нужно постоянно настраивать.

Читать еще:  Рейтинг лучших швейных машин для домашнего использования

Ограничивающие факторы, связанные с использованием промышленных 3D-принтеров, – высокая цена оборудования и материалов, особые условия эксплуатации, трудности при адаптации к существующим технологическим циклам. Несмотря на стоимость, промышленные 3D-принтеры в конечном счете окупают расходы в разы, сокращая циклы технологического процесса и, соответственно, время производства.

По мнению экспертов, в ближайшее десятилетие все крупные промышленные предприятия модернизируют свои производства аддитивными установками, так как уже сейчас их выгоды очевидны.

Выбирая 3D-принтер, нужно понимать, что:

  1. нет универсальной аддитивной технологии, которая бы оптимально решала любые производственные задачи;
  2. у каждой из технологий 3D-печати (и у каждого типа принтеров) есть свои преимущества и недостатки;
  3. чтобы правильно выбрать и купить 3D-принтер, следует исходить из задач, которые четко определены вашим предприятием.

Сделать грамотный выбор вам помогут высококвалифицированные специалисты компании iQB Technologies. Мы разработаем и внедрим уникальные 3D-решения для вашего промышленного предприятия, исследовательского центра, а также проектов малого и среднего бизнеса. Звоните нам: +7 (495) 269-62-22 .

Статья опубликована 9 апреля 2018 в 14:20, дополнена 15 января 2020

Классификация 3D принтеров и технологий 3D печати

В статье раскрывается вопрос таким образом, чтобы в голове у читателя сложилась четкая картина о том, какие принципы заложены в технологии 3D печати, какие материалы используются и в конечном итоге какую технологию лучше использовать для получения определенного результата, будь то деталь из титана, или мастер-модель для последующего тиражирования.

Статья основана на книге Fabricated: The New World of 3D printing.

I. 3D принтеры, которые что-то выдавливают или выливают или распыляют

1) FDM (fused deposition modeling) принтеры которые выдавливают какой-то материал слой за слоем через сопло-дозатор, не буду расписывать подробно, мы про них все знаем. Все мэйкерботоподобные принтеры + принтеры Stratasys + различные кулинарные принтеры (используют глазурь, сыр, тесто) + медицинские которые печатают “живыми чернилами” (когда какой-либо набор живых клеток помещается в специальный медицинский гель которые используется далее в биомедицине).

2) Технология Polyjet, была изобретена израильской компанией Objet в 2000 г. в 2012 их купили Stratasys. Суть технологии: фотополимер маленькими дозами выстреливается из тонких сопел, как при струйной печати, и сразу полимеризуется на поверхности изготавливаемого девайса под воздействием УФ излучения. Важная особенность, отличающая PolyJet от стереолитографии, является возможность печати различными материалами.

Преимущества технологии:

  • толщина слоя до 16 микрон (клетка крови 10 микрон)
  • быстро печатает, так как жидкость можно наносить очень быстро.

Недостатки технологии:

  • печатает только с использованием фотополимера — узко-специализированный, дорогой пластик, как правило, чувствительный к УФ и достаточно хрупкий.

Применение:

  • промышленное прототипирование
  • медицина

3) LENS (LASER ENGINEERED NET SHAPING)

Материал в форме порошка выдувается из сопла и попадает на сфокусированный луч лазера. Часть порошка пролетает мимо, а та часть, которая попадает в фокус лазера мгновенно спекается и слой за слоем формирует трехмерную деталь. Именно по такой технологии печатают стальные и титановые объекты. Поскольку до появления этой технологии печатать можно было только объекты из пластика, к 3D печати особенно серьезно никто не относился, а эта технология, открыла двери для 3D печати в “большую” промышленность. Порошки различных материалов можно смешивать и получать таким образом сплавы, на лету.

Применение: например, титановые лопатки для турбин с внутренними каналами охлаждения.

Производитель оборудования: Optomec.

4) LOM (laminated object manufacturing)

Тонкие ламинированные листы материала вырезаются с помощью ножа или лазера и затем спекаются или склеиваются в трехмерный объект. Т.е. укладывается тонкий лист материала, который вырезается по контуру объекта, таким образом получается один слой, на него укладывается следующий лист и так далее. После этого все листы прессуются или спекаются.

Таким образом печатают 3D модели из бумаги, пластика или из алюминия. Для печати моделей из алюминия используется тонкая алюминиевая фольга, которая вырезается по контуру слой за слоем и затем спекается с помощью ультразвуковой вибрации.

II. 3D принтеры, которые что-то спекают или склеивают

1) SL (Stereolithography) Стереолитография.

Есть небольшая ванна с жидким полимером. Луч лазера проходит по поверхности, и в этом месте полимер под воздействием УФ полимеризуется. После того как один слой готов платформа с деталью опускается, жидкий полимер заполняет пустоту далее запекается следующий слой и так далее. Иногда происходит наоборот: платформа с деталью поднимается вверх, лазер соответственно расположен снизу…

После печати таким методом, требуется постобработка объекта — удаление лишнего материала и поддержки, иногда поверхность шлифуют. В зависимости от необходимых свойств конечного объекта модель запекают в т.н. ультрафиолетовых духовках.

Фотополимер зачастую бывает токсичным поэтому при работе с ним нужно пользоваться средствами защиты и респираторами. Содержать и обслуживать такой принтер дома — сложно и дорого

Преимущества: быстро и точно, точность до 10 микрон. Для спекания фотополимера достаточно лазера от Blu-ray проигрывателя, благодаря чему на рынке появляются дешевые при этом точные принтеры работающие по такой технологии (e.g. Form1).

2) LS (laser sintering)

Лазерное спекание. Похоже на SL, только вместо жидкого фотополимера используется порошок, который спекается лазером.

Преимущества:

  • менее вероятно, что деталь сломается в процессе печати, так как сам порошок выступает надежной поддержкой
  • материалы в порошковой форме довольно легко найти в продаже в том числе это могут быть: бронза, сталь, нейлон, титан.

Недостатки:

  • поверхность получается пористая
  • некоторые порошки взрывоопасны, поэтому должны храниться в камерах, заполненных азотом
  • спекание происходит при высоких температурах, поэтому готовые детали долго остывают, в зависимости от размера и толщины слоев, некоторые предметы могут остывать до одного дня.

3) 3DP (three dimensional printing)

Технология изобретена в 1980 году в MIT студентом Paul Williams, технология была продана в несколько коммерческих организаций, одна из которых — zCorp, в настоящее время поглощена 3D Systems.

На материал в порошковой форме наносится клей, который связывает гранулы, затем поверх склеенного слоя наносится свежий слой порошка, и так далее. На выходе, как правило, получается материал sandstone (похожий по свойствам на гипс).

Преимущества:

  • так как используется клей, в него можно добавить краску и таким образом печатать цветные объекты
  • технология относительна дешевая и энергоэффективная
  • можно использовать в условиях дома или офиса
  • можно печатать использовать порошок стекла, костный порошок, переработанную резину, бронзу и даже древесные опилки.

Используя похожу технологию можно печатать съедобные объекты например из сахара или шоколадного порошка. Порошок склеивается специальным пищевым клеем, в клей может добавляться краситель и ароматизатор. Как пример, новые 3D принтеры от компании 3D systems, которые были продемонстрированы на CES 2014 — ChefJet и ChefJet Pro.

Недостатки:

    на выходе получается достаточно грубая поверхность, с невысоким разрешение

100 микрон

  • материал нужно подвергать постобработке (запекать), чтобы придать ему необходимые свойства.
  • Ссылка на основную публикацию
    ×
    ×
    Adblock
    detector