Разработана система искусственного интеллекта, способная управлять роботизированной рукой. - kupihome.ru

Разработана система искусственного интеллекта, способная управлять роботизированной рукой.

Суставная часть: разработана механическая рука для людей с ограниченными возможностями

Новый робот-манипулятор, созданный в МФТИ, поможет людям с ограниченными возможностями. Он представляет собой механическую руку с семью суставами и кистью, которая способна брать предметы, налить лекарство, напоить и накормить человека. В перспективе такие установки могут пригодиться и на производстве — там, где работникам буквально нужна «третья рука». Управляется уникальный робот взглядом. Изобретение российских ученых появится на рынке в ближайшие три года.

В Московском физико-техническом институте (МФТИ) сконструировали уникальную роботическую систему, предназначенную для помощи маломобильным людям. Уже создан прототип устройства, состоящий из робота-манипулятора, специального захвата и системы технического зрения, рассказал «Известиям» руководитель лаборатории волновых процессов и систем управления МФТИ Роман Горбачев.

— Комплекс будет предназначен для людей, у которых нарушена функция рук в результате травм или болезни, — говорит он. — Робот должен дать возможность человеку переместить предметы, открыть бутылку, подать яблоко. Манипулятор сможет его напоить и накормить, помочь принять лекарство.

Роботизированная стойка снабжена для маневренности семью суставами, которые выполняют наклоны и вращаются вокруг своей оси. Управление машиной не потребует от человека никаких двигательных усилий — достаточно будет лишь посмотреть на нужный объект.

— Робот сам распознает, на какой объект направлен взгляд, чтобы выполнить ту или иную операцию. Поступившая от пользователя команда фиксируется айтрекером и передается в систему управления, — пояснил Роман Горбачев. — В самом роботе есть также устройства для реализации технического зрения, с помощью которых он также видит, что нужно взять или переместить.

Система зрения формирует образ нужного предмета в виде стереопары, то есть пары плоских изображений одного и того же объекта или сюжета, у которых есть различия между изображениями. Они призваны создать эффект объема. Затем система управления фиксирует пространственные координаты того, что нужно подать или переместить, и передает команду манипулятору. По этим данным робот рассчитывает, на сколько градусов и под каким углом нужно повернуть тот или иной сустав манипулятора, чтобы эффективно совершить захват объекта.

Робот-помощник может быть установлен у кровати больного или же на инвалидную коляску. Его можно будет использовать не только дома, но и за его пределами — к примеру, сейчас ученые настраивают аппаратуру для того, чтобы обучить машину брать те или иные продукты с полок магазина.

Предполагается, что в дальнейшем манипулятор сможет управляться не только через айтрекер, но и голосом и даже силой мысли. Специально для этого в МФТИ разрабатывается инновационная нейрогарнитура.

— Это такая шапочка с контактами, на которой размещено шесть электродов. Они фиксируют намерения человека. Наши программисты разработали специальные алгоритмы, которые позволяют устройству распознавать команды. Пользователю нужно будет только послать мысленный сигнал, например «хочу», — пояснил ведущий инженер лаборатории волновых процессов и систем управления МФТИ Михаил Зарипов.

Сама разработка и применяемая технология взаимодействия «мозг–механизм» крайне интересна и находится на передовом крае науки, уверен директор научно-исследовательского центра спортивной науки ЮУрГУ Виталий Епишев. Но использовать ее нужно «с умом».

— Зачастую человек не может сидеть, ходить, двигать рукой или ногой не потому, что не может, а потому, что забыл как. Именно для этого необходима двигательная реабилитация, которая зачастую бывает агрессивной, — человека специально заставляют двигаться, для того чтобы поесть, сходить в туалет, — уверен он. — Следовательно, нельзя рассчитывать, что применение данной технологии резко повысит число «восстановившихся», скорее будет наоборот. Этот робот необходим для тех пациентов, которые уже не могут восстановиться.

Ученые предполагают, что такие установки также могут пригодиться и на производстве — там, где работникам буквально нужна «третья рука»: взять телефон, подать инструмент, что-то подержать. По прогнозам разработчиков, робот-сиделка появится на рынке в ближайшие три года.

Создана первая в мире управляемая силой мысли роботизированная рука (+видео)

Инженеры из Университета Карнеги – Меллона в сотрудничестве со специалистами из Миннесотского университета совершили настоящий прорыв в области разработки неивазивных методов управления роботизированным устройством. Используя неинвазивный нейрокомпьютерный интерфейс (BCI) ученые создали первую в мире роботизированную руку, управляемую человеческим мозгом и обладающую возможностью следить за направлением курсора мыши на экране компьютера. Как отмечает портал Tech Explore, сообщающий о разработке, возможность использования неинвазивного метода управления роботизированными устройствами будет иметь широкий спектр применений. Например, данная технологий может оказаться очень полезной для парализованных людей.

Недостатки современных нейрокомпьютерных интерфейсов

В прошлом нейрокомпьютерные интерфесы уже показывали весьма высокую точность управления роботизированными объектами, однако для этого использовались специальные имплантаты, которые вживлялись в мозг человека и отслеживали нужные сигналы. Внедрение этих имплантатов – весьма сложная и довольно опасная задача, требующая хирургического вмешательства. Помимо этого, такие устройства очень дорого стоят, а на деле могут оказаться весьма ограниченными в своих возможностях. Поэтому подобные механизмы применяются в очень редких случаях.

Одной из основных текущих задач сферы разработки нейрокомпьютерных интерфейсов является создание менее инвазивных, а лучше – полностью неинвазивных технологий, которые позволят парализованным людям управлять своим окружением или роботизированными конечностями силой своих мыслей, чем помогут миллионам человек по всему миру улучшить качество своей жизни.

Проблема заключается в том, что использование неинвазивных нейрокомпьютерных интерфейсов, которые собирают информацию о сигналах мозга через внешние электроды, а не через имплантируемые в мозг чипы, сопровождается передачей вместе сигналами мозга количества «шума», который снижает точность управления. Поэтому неивазивные методы мысленного управления роботизированными устройствами сильно проигрывают технологиям с использованием имплантатов. Несмотря на это, разработчики не сдаются и пытаются создать более точные методы управления, которые не будут требовать хирургического вмешательства.

И, похоже, заведующему кафедрой биомедицинской инженерии Университета Карнеги – Меллона, профессору Бину Хе это удалось.

«В сфере разработки роботизированных устройств с управлением силой мысли через специальные мозговые имплантаты достигнуты значительные успехи. Это действительно так. Однако ключевой целью подобных разработок является создание неинвазивных методов. Достижения в области нейронного декодирования и практическая полезность неинвазивного контроля роботизированными руками окажут важнейшее влияние на развитие неинвазивной нейробиотики», — комментирует Хе.

Первая в мире управляемая силой мысли роботизированная рука

Используя новые методы сенсорных технологий и машинного обучения Хе вместе со своей командой смог получить доступ к глубинным сигналам мозга, достигнув высокой точности управления роборукой. Благодаря неинвазивной нейровизуализации и новой парадигме непрерывного преследования, система научилась преодолевать шумные сигналы ЭЭГ, что привело к значительному улучшению нейронного декодирования и облегчило непрерывное управление роботизированными устройствами в режиме реального времени.

Читать еще:  Оптимальное расстояние просмотра телевизора в зависимости от диагонали

Используя неинвазивный BCI для управления роботизированной рукой, которая отслеживает курсор на экране компьютера, Хе с командой впервые продемонстрировал, что манипулятор теперь может непрерывно следовать за курсором. Ранее подобные устройства следовали за движением курсора резкими, дискретными движениями, как будто пытались «догнать» команды мозга – теперь конечность следует за курсором плавно и непрерывно.

В статье, опубликованной в журнале Science Robotics, команда описывает создание новой платформы, которая направлена на улучшение «мозговых» и «компьютерных» компонентов BCI за счет повышения вовлеченности пользователей и их обучения, а также усовершенствования пространственного разрешения неинвазивных нейронных данных посредством визуализации источников ЭЭГ.

В статье указано, что уникальный подход команды к решению этой проблемы улучшил систему обучения BCI почти на 60 процентов для традиционных задач центрирования, а также повысил качество непрерывного отслеживания компьютерного курсора более чем на 500 процентов.

К настоящему моменту система была проверена с участием 68 работоспособных людей (до 10 сеансов для каждого), людях (до 10 сеансов для каждого субъекта), включая управление виртуальным устройством и управление роботизированной рукой для непрерывного преследования. Клинические испытания технологии с участием настоящих пациентов ученые планируют начать проводить в самом ближайшем будущем.

Видео одного из участников эксперимента, использующего виртуальный курсор с помощью нейрокомпьютерного интерфейса, а также роботизированной руки, управляемой силой мысли для выполнения задачи по непрерывному контролю случайно двигающейся цели

«Несмотря на технические проблемы с использованием неинвазивных сигналов, мы полностью привержены тому, чтобы донести эту безопасную и экономичную технологию до людей, которые могут извлечь из нее пользу», – говорит Хе.

«Эта работа представляет собой важный шаг в развитии неинвазивных компьютерно-мозговых интерфейсов – технологии, которая когда-нибудь может стать повсеместной вспомогательной системой, помогающей людям, как смартфоны».

Искусственный интеллект, разработка и области применения

Искусственный интеллект — это не будущее, искусственный интеллект — это настоящее.

Технологии искусственного интеллекта (ИИ) применяются повсеместно уже почти с десяток лет. Это дало нам много интеллектуальных продуктов, которые мы активно используем в повседневной жизни. Однако они еще очень далеки, чтобы называться «интеллектом» и имеют большой потенциал для улучшения.

Так, все, чего мы достигли до сегодняшнего дня — это библиотеки для разработки ИИ, которые в основном требуют контролируемого обучения. Тем не менее такие технологические гиганты, как Microsoft, Facebook и Google, работают над созданием программ, которые будут работать поверх существующих библиотек разработки ИИ, чтобы дать им кроссплатформенность и поддержку самообучения.

Для разработки самообучающегося ИИ будут использоваться большие данные (англ. big data), квантовые вычисления, распределенные вычисления и связь 5G.

Что такое искусственный интеллект?

Искусственный интеллект — это искусственно созданная система, основной целью которой является воспроизведение некоторых или всех черт человеческого интеллекта, а именно — планирование, обучение, рассуждение, решение проблем, оперирование данными и их использование, восприятие, контроль и манипулирование объектами и, в меньшей степени, социальный интеллект и креативность.

Как мы знаем, человеческое мышление базируется на взаимодействии нейронов мозга, связи которых изменяются под влиянием жизненного опыта.

Аналогично, алгоритмы ИИ были разработаны на основе нейронных сетей, которые позволяют компьютерам обретать новые навыки, как это делают люди.

Нет необходимости программировать всю логику ИИ вручную, поскольку компьютер способен оптимизировать программу и самостоятельно подстраиваться для корректного выполнения необходимых действий.

На какой технологии основаны современные системы ИИ?

Существует несколько основных, базовых направлений в разработке ИИ, но на текущий момент, наиболее эффективны алгоритмы на основе CNN (сверточная нейронная сеть) и RNN (рекуррентная нейронная сеть).

CNN — это однонаправленная (без обратных связей) многослойная сеть, которая отлично подходит для работы с такими данными, как изображения и видео, где данные размещены в виде сетки пикселей. В свою очередь RNN хорошо справляется с последовательными данными, такими как текст и аудио.

CNN называется «сетью прямой связи», а RNN называется «сетью обратной связи».

Слух, возможность говорить, зрение и прогнозирующая интуиция базируются на использовании обеих сетей (CNN и RNN), а также технологии обработки естественного языка (NLP), которые дополняют друг друга. Подобные технологии используются в Alexa, Siri, Google Now, Cortana и других интеллектуальных голосовых помощниках.

Какие программы используются для создания ИИ?

Существуют десятки фреймворков для разработки ИИ, но в этот список включены только самые выдающиеся.

Это библиотека нейронных сетей на основе Python с открытым исходным кодом, которая может работать под управлением Microsoft CNTK (Cognitive Toolkit), Tensorflow и многих других сред.

KERAS лучше всего подходит новичкам.

TENSORFLOW

Tensorflow является наиболее выдающейся средой для разработки искусственного интеллекта, которая использует методы машинного обучения, такие как нейронные сети.

Tensorflow был разработан командой Google Brain, именно этот фреймворк в ответе за автозавершение фраз в текстовое поле поисковой системы Google, а также ИИ приложений Google.

Созданная командой Google DeepMind, Sonnet — это библиотека, работающая поверх TensorFlow для построения сложных нейронных сетей глубокого обучения. SONNET лучше всего подходит для исследований и разработок в области искусственного интеллекта и является очень сложной для новичков.

CNTK (Microsoft Cognitive Toolkit)

Ранее известный как CNTK, Microsoft Cognitive Toolkit нацелен обучить алгоритмы мыслить как человеческий мозг. Он обладает скоростью, масштабируемостью, качеством и совместимостью с C ++ и Python. Microsoft использует его для функций AI в Skype, Cortana и Bing.

Microsoft CNTK позволяет пользователям комбинировать популярные модели глубокого обучения, такие как DNN, CNN и RNN.

Pytorch — это библиотека машинного обучения с открытым исходным кодом для Python, основанная на Torch, которая использует технологии обработки естественного языка (NLP).

DL4J (Deeplearning4j)

Deeplearning4j — это библиотека с открытым исходным кодом для разработки ИИ с использованием методов глубокого обучения. Написана специально для Java и JVM (Java Virtual Machine).

DL4J работает на базе собственной библиотеки числовых вычислений и может работать как на CPU, так и на GPU.

Есть еще много различных сред для разработки искусственного интеллекта. Коротко лишь отметим ONNX, платформу глубокого обучения, которая совместно разработана Facebook и Microsoft, а также перечислим несколько других: H2O, DSSTNE, Theano, DeepDetect, ConvNetJS, ACT-R, Caffe и CaffeOnSpark.

Apache MXNET — это программная среда с глубоким обучением для развертывания нейронных сетей. Она имеет масштабируемую модель обучения, которая поддерживает несколько языков программирования для разработки AI: Go, R, Scala, Perl, C ++, Python, Julia, Matlab, JavaScript, и является проектом с открытым исходным кодом.

MXNET используется для развертывания нейронных сетей в службах общего хостинга, таких как AWS и Microsoft Azure.

Читать еще:  Какое масло для смазки цепи нужно использовать в электропилах bosch, makita и других

Где используется искусственный интеллект?

Интеллектуальные системы применяются в разных областях и сферах. Их можно найти в голосовых помощниках, в торговых роботах, военных разработках и так далее. Давайте пробежимся по наиболее важным.

Голосовые помощники

Голосовые помощники, основанные на базе искусственного интеллекта, такие как Siri, Google Now, Alexa, Bixby и Cortana. Они слушают, что говорит пользователь, чтобы преобразовать речь в машиночитаемый вектор, после чего выдается вектор ответа, который произносится голосовым помощником с помощью Natural Language Processing (NLP).

Умные помощники

Autodesk Eva является отличным примером интеллектуального помощника, который использует CNN и NLP для взаимодействия с клиентами в режиме реального времени.

Умный помощник, смоделированный в 3D, может вести диалог с клиентом в режиме реального времени и имитировать соответствующие выражение лица.

Беспилотные автомобили

Беспилотные автомобили используют радар, LIDAR (детектор света и определитель дистанции), GPS и камеру для создания трехмерных моделей приближающихся транспортных средств. Все эти данные объединяются для определения местоположения транспортного средства с очень высокой точностью. Водителем выступает ИИ, который анализирует всю поступающую информацию с датчиков.

Распознавание лиц

Разработка искусственного интеллекта на основе CNN сделала возможным внедрение системы распознавания лиц.

Недавно в Китае начали использовать систему распознавания лиц с помощью камер видеонаблюдения по всему городу, налагая штраф за нарушение правил дорожного движения. Магазины Alibaba в Китае используют распознавание лиц и изображений для выставления счета.

Балансировка нагрузки

Балансировка нагрузки на дороги, транспортные системы, серверы и так далее.

Языковые переводчики

Гугл переводчик является хорошим примером. Он имеет два модуля: кодировщик и декодер. Кодировщик берет входные предложения из речи или текста, а затем переводит их в вектор, который является одинаковым форматом для входных данных со всех языков.

Модуль декодера принимает этот вектор в качестве входных данных, а затем генерирует текст или речь на целевом языке. Распознавание языка происходит с помощью RNN, вывод речи выполняется с помощью NLP.

Поиск и анализ изображений

Поиск и анализ изображений используется для проверки плагиата,
поиска людей, для SEO целей, поиска оскорбительного контента в социальных сетях.

Оптимизация для достижения наилучших результатов

Модули Deepmind были обучены игре в шахматы, Go, Dota 2, Starfield 2.

Эти модули наиграли игр на сотни лет всего за несколько недель обучения, что привело AI к победе над лучшими игроками в мире.

Конечно, это не все сферы применения ИИ. По мере развития технологий и способностей ИИ, сфера применения интеллектуальных систем будет только расширяться.

Если тенденция развития технологий сохранится или ускорится, боюсь, что мы успеем застать эпоху, когда компьютеры станут умнее людей, и все службы, системы и средства будут подключены к централизованной системе под управлением искусственного интеллекта.

Вымершие животные. Топ 10 исчезнувших видов

Можете ли вы отличить настоящее лицо от фейка, созданного ИИ?

Искусственный интеллект придумает и создаст инновационный портал, где фиксированные дриоды будут расщеплять волокна синхрофазатропов в стадии турбовакуляторной абсорбции и абсорбации. Генератором идеи выступает регенерирующее звено катализаторов ядра и сверхчувствительных частиц этих дриодов. Аморфное расщепление волокон приведет к энергии будущего

Искусственный интеллект и интеллектуальные роботы – что это такое или кто это такие?

Закон.Ру – официально зарегистрированное СМИ. Ссылка на настоящую статью будет выглядеть следующим образом: Рожкова М.А. Искусственный интеллект и интеллектуальные роботы – что это такое или кто это такие? [Электронный ресурс] // Закон.ру. 2019. 23 ноября. URL: https://zakon.ru/blog/2019/11/23/iskusstvennyj_intellekt_i_intellektualnye_roboty__chto_eto_takoe_ili_kto_eto_takie

Сегодня на многих конференциях и во многих публикациях обсуждаются вопросы, связанные с использованием искусственного интеллекта (далее – ИИ) и роботов. Но высказываемые позиции иногда сложно поддержать ввиду очевидного непонимания спикерами/авторами того, что же собой представляет ИИ и (или) робот.

В преддверии «IP-battle: интеллектуальные права на объекты, создаваемые искусственным интеллектом (роботом)», мне показалось правильным уделить некоторое внимание вопросу, вынесенному в заголовок настоящей статьи, и попробовать нивелировать проблему признания ИИ/робота субъектом права.

Как известно, существует прецедент признания за роботом правосубъектности – речь идет о известном человекоподобном роботе Софии, получившей гражданство Саудовской Аравии[1]. Этот прецедент, по всей видимости, стал результатом активно прорабатывающейся на тот момент идеи признания «электронной личности» для обеспечения прав и обязанностей ИИ, в связи с которой Европейским парламентом предлагалось разработать ряд нормативных актов, регулирующих использование и создание ИИ и роботов[2]. Но в большинстве стран позиция, предполагающая признание ИИ или робота полноценным субъектом права, пока не нашла широкой поддержки. Вместе с тем, например, в Соединенном Королевстве недавно была подана патентная заявка, в которой в качестве автора изобретения был заявлен ИИ[3].

Что собой представляет ИИ?

Как известно, ИИ – понятие многоаспектное: под ним понимают и область информатики, и междисциплинарную науку, и способность информационной системы правильно интерпретировать данные, используя полученный результат для достижения конкретной цели, и саму информационную систему и проч.

В целях настоящей статьи ИИ рассматривается в качестве интеллектуальной системы (информационно-вычислительной системы), способной без участия человека[4] решать задачи, в том числе относящиеся к творческим, в также самообучаться в ходе решения таких задач. Такая система включает в свой состав три основных блока:

– базы данных (наборы больших данных) и знаний о предметной области, включая результаты машинного обучения;

– решатель – компьютерную программу, которая на основе специализированных обучающихся алгоритмов, разрешает поставленные задачи;

– интеллектуальный интерфейс – совокупность средств, методов и правил, которые позволяют человеку вести общение с самой интеллектуальной системой.

В статье Википедии, посвященной ИИ[5], обращается внимание на то, что словосочетание Artificial Intelligence (AI), предложенное Дж. Маккрти еще в 1956 г., вовсе не связывалось его автором с пониманием интеллекта у человека – под intelligence понималась «вычислительная составляющая способности достигать целей в мире»[6], разные виды которой встречаются не только у людей, но и у животных, и у некоторых машин. В связи с этим в отечественных публикациях обычно подчеркивается, что слово «intelligence» в используемом контексте означает скорее «умственные способности» или «умение рассуждать разумно», а вовсе не «интеллект», для которого есть английский аналог «intellect».

Таким образом, можно сделать вывод о том, что перевод словосочетания «Artificial Intelligence» на русский язык как «искусственный интеллект» не является верным – вероятно, точнее было бы перевести его, например, как «искусственный разум». Но поскольку термин «искусственный интеллект» уже прочно вошел в отечественный обиход, в рамках настоящей статьи не будет предлагаться его замена или коррективы. В то же время нужно учитывать обозначенный нюанс, так как в некоторых случаях он вполне способен оказать влияние на исследовательские выводы.

Читать еще:  Рейтинг самых тонких смартфонов 2018 года

В развитие изложенного хотелось бы процитировать публикацию Константина Хайта, который пишет о том, что словосочетание «искусственный интеллект» сегодня имеет совсем не тот смысл, который пытаются вложить в него журналисты и философы, и более того, это словосочетание представляет собой одну из главных лингвистических подтасовок современности: «То, что человек решает некоторую задачу определенным способом, вовсе не означает, что компьютер решает ее точно таким же способом. Однако, вольная или невольная подтасовка, кроющаяся за словосочетанием «искусственный интеллект» намного глубже»[7]. Поясняя свою позицию, автор подчеркивает: «Интеллект – это штука, прямо обратная алгоритму, который… есть «ясная, точная последовательность действий, заведомо приводящая к результату». Словосочетание «интеллектуальные алгоритмы» – оксюморон, интеллект как раз и применим в тех случаях, когда приемлемого алгоритма не существует… Проблема в том, что человек и компьютер устроены фундаментально по-разному. Все, что умеет компьютер – считать. Выполнять последовательные вычислительные операции с сумасшедшими по человеческим меркам скоростями. Компьютер спроектирован для реализации алгоритмов, и эту задачу он решает блестяще. Человек изначально не приспособлен для выполнения алгоритмов. мы не умеем вычислять. Наш мозг приспособлен для единственной операции – поиска ассоциативных связей. Любую задачу человек решает подбором подходящих ассоциаций. И делает это несоизмеримо лучше любого компьютера»[8]. В качестве примера автор рассматривает распознавание лиц: «Действительно, эту задачу человек и машина сейчас решают приблизительно на одном уровне успешности. Правда, делают это совершенно по-разному. Компьютер – обсчитывает характеристические точки и вычисляет корреляцию, человек – ищет в памяти ассоциации и устанавливает связи между ними. Пока речь идет о частном вопросе «определите кто это», оба подхода дают примерно эквивалентные результаты. Но, если ставить задачу шире, пути человека и компьютера резко расходятся в соответствии с принципами функционирования. Машина, выполняющая алгоритм, с относительной легкостью обсчитает хоть десять изображений, хоть пятьсот, хоть полмиллиона, хватило бы вычислительных мощностей… Зато homo sapiens столь же просто определит доброе перед ним лицо, или злое, взволнованное, или спокойное, привлекательное, или отталкивающее. Наш мозг заточен не на перебор, а на сравнение, причем сравнение ассоциативное, то есть использующее неполностью определенный эталон»[9].

С учетом всего изложенного на сегодняшний день вряд ли можно признать искусственный разум равным человеческому: ИИ сегодня – это только быстродействующая вычислительная машина, использующая заложенные в нее обучающиеся алгоритмы для решения конкретных задач. Да, это очень сложная информационно-вычислительная система, но она решает задачи, которые поставлены ей человеком, на основе алгоритмов, разработанных человеком, не выходя за рамки, обозначенные человеком. Поэтому явно преждевременно настаивать на правосубъектности ИИ, признавая его полноценным членом общества, отношения с которым остро нуждаются в соответствующем правовом регулировании.

Задача создания интеллекта, действительно сопоставимого с человеческим, стоит на повестке дня, и ученые говорят о некоторых подвижках в этой области. Вместе с тем сегодня определяющим является следующий вывод: «Мы используем искусственный интеллект в тех областях, где человеческий работает не лучшим образом. Создать конкурента человеческому разуму во всех его проявлениях пока не получилось»[10].

Что собой представляют роботы?

Выше разбиралась ситуация, когда ИИ «обитает» в компьютере. В настоящей части статьи будет рассматриваться «воплощение» ИИ в роботе.

Слово «робот» у многих вызывает стойкую ассоциацию с человекоподобными роботами[11], которые могут управлять конечностями, слухом, зрением и речью, манипулировать предметами, общаться с человеком и проч. Между тем, различаясь по своему назначению и исполняемым функциям (например, промышленные роботы бывают сварочные, режущие, комплектовочные, сборочные, упаковочные и проч.), роботы существенно разнятся и по внешнему виду: нередко робот – это всего лишь механическая «рука», которая осуществляет запрограммированные манипуляции. Да и роботы-гуманоиды далеко не во всех случаях полностью воспроизводят человека: например, уже упоминавшийся робот София имеет только верхнюю часть «туловища», а задняя часть ее головы сделана из прозрачного пластика, через который видно устройство ее «мозга».

Под роботами традиционно понимаются автоматические устройства (создаваемые обычно по принципу живого организма), которые предназначены для осуществления определенных операций, действуют по заложенной программе и получают информацию от датчиков. Но такое определение годится, скорее для первых двух поколений роботов.

Роботы первого поколения – это программные роботы (роботы с программным управлением), которые выполняют четко определенные операции в последовательности, жестко заложенной программой. Это как раз и есть те самые промышленные роботы, которые осуществляют транспортировку, сварку, штамповку, простейшие сборочные операции и т.д.

Роботы второго поколения – это очувствленные роботы, которые также выполняют операции в соответствии с программой, но нуждаются в получении информации извне, что и обусловило наделение их искусственными «органами чувств»: тактильными, зрительными, звуковыми, кинестетическими и другими сенсорными датчиками. Работа роботов второго поколения предполагает использование алгоритмического и программного обеспечения, что позволяет роботам ориентироваться в существующих условиях и автоматически приспосабливаться (адаптироваться) в случае изменения этих условий (что и объясняет их второе название – адаптивные роботы), а также обучаться в процессе функционирования.

В целях настоящей работы интерес представляют роботы третьего поколения – интеллектуальные роботы, которые предназначены не только для осуществления физических и двигательных функций, но и для решения интеллектуальных задач. Речь не только о роботах-андроидах, игровых и бытовых роботах, но и военных, боевых, морских роботах, беспилотных летательных аппаратах и беспилотных автомобилях, космических и медицинских роботах, экзоскелетах и т.д. Эти роботы, бесспорно, отличаются от роботов второго поколения сложностью управляющей информационно-вычислительной системы, включающей элементы ИИ. Но несмотря на то, что интеллектуальный робот управляется ИИ, он вовсе не становится самостоятельной «электронной личностью», способной критически мыслить, – на сегодняшний это все та же информационно-вычислительная система, ограниченная заложенным в нее функционалом и имеющая соответствующую ее функциям материальную оболочку.

Изложенное позволяет говорить о том, что сегодня человечество и близко не подошло к тому, чтобы признавать ИИ или интеллектуальных роботов субъектами права.

Но вместе с тем использование ИИ порождает массу вопросов, связанных с возникновением интеллектуальных прав на объекты, которые созданы с «участием» и «единолично» ИИ. Каким образом следует решать вопрос принадлежности интеллектуальной собственности для целей оборота, например, когда автором картины является интеллектуальный робот, написавший ее самостоятельно? Да и возникают ли в таких случаях интеллектуальные права? И если да, то кто становится правообладателем – владелец робота, разработчик ПО, «человек, нажавший кнопку»? Или в ситуации, когда результаты творчества представляют собой итог использования специальной программы, включающей элементы ИИ, – можно ли говорить здесь о возникновении интеллектуальных прав у лица, использующего такую программу?

P.S. IP CLUB лента новостей в сфере интеллектуальной собственности и Digital Law в

[1] Morby Alice. Saudi Arabia becomes first country to grant citizenship to a robot

Ссылка на основную публикацию
×
×
Adblock
detector